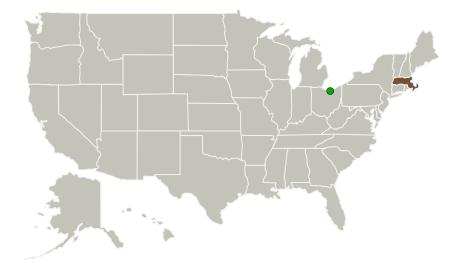
Space Technology Research Grants

Additive Manufacturing of Low Work Function Oxides for Spaceborne Thermionic Emission Applications

Completed Technology Project (2017 - 2021)


Project Introduction

The purpose of this project is to develop an additive manufacturing process for the fabrication a material for use in thermal management of high-speed vehicles, energy conversion, and electric propulsion. To accomplish this objective, the material will be characterized and an additive manufacturing process will be selected and developed, resulting in the creation of a new additive manufacturing machine for ceramic-metal composites. Furthermore, an attempt will be made to synthesize and fabricate the materials through a single-step additive manufacturing process, reducing the manufacturing time of the material. The research is directly aligned with NASA's mission to develop novel materials and manufacturing systems for aerospace applications. Furthermore, the applications enabled from the manufacturing of this material will be beneficial to thermal protection, electric propulsion, and energy conversion systems.

Anticipated Benefits

The research is directly aligned with NASA's mission to develop novel materials and manufacturing systems for aerospace applications. Furthermore, the applications enabled from the manufacturing of this material will be beneficial to thermal protection, electric propulsion, and energy conversion systems.

Primary U.S. Work Locations and Key Partners

Additive Manufacturing of Low Work Function Oxides for Spaceborne Thermionic Emission Applications

Table of Contents

Project Introduction	1
<u> </u>	
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destination	3

Space Technology Research Grants

Additive Manufacturing of Low Work Function Oxides for Spaceborne Thermionic Emission Applications

Completed Technology Project (2017 - 2021)

Organizations Performing Work	Role	Туре	Location
Massachusetts Institute of Technology(MIT)	Lead Organization	Academia	Cambridge, Massachusetts
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary	y U.S. Worl	k Locations
---------	-------------	-------------

Massachusetts

Project Website:

https://www.nasa.gov/strg#.VQb6T0jJzyE

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Massachusetts Institute of Technology (MIT)

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

Hung D Nguyen

Principal Investigator:

Anastasios J Hart

Co-Investigator:

Daniel Oropeza Gomez

Space Technology Research Grants

Additive Manufacturing of Low Work Function Oxides for Spaceborne Thermionic Emission Applications

Completed Technology Project (2017 - 2021)

Technology Areas

Primary:

• TX12 Materials, Structures, Mechanical Systems, and Manufacturing └ TX12.4 Manufacturing └ TX12.4.1 Manufacturing Processes

Target Destination Earth

